

Electron Momentum Density in Europium Using a ^{137}Cs Compton Spectrometer

Babu Lal Ahuja^a, Harsh Malhotra^b, and Sonal Mathur^a

^a Department of Physics, College of Science Campus, M. L. Sukhadia University,
Udaipur - 313001 (Raj.), India

^b Department of Physics, G.D. Govt. Girls College, Alwar - 301001 (Raj.), India

Reprint requests to Dr. B. L. A.; E-mail: blahuja@yahoo.com

Z. Naturforsch. **60a**, 512 – 516 (2005); received December 17, 2004

The isotropic Compton profile of europium, the most reactive lanthanide, has been measured at a resolution of 0.40 a.u. using 661.65 keV gamma-rays. In the absence of a band structure-based Compton profile, the experimental data are compared with renormalised-free-atom (RFA) and free electron models. It is seen that the RFA model with e^- - e^- correlation agrees better with the experiment than the free electron models. The first derivatives of the Compton profiles show the hybridization effects of s-, p-, d-, f-electrons. From our RFA data we have also computed the cohesive energy of europium.
PACS: 13.60.F, 71.15.Nc, 78.70. -g, 78.70.Ck

Key words: Compton Profile; Electron Momentum Density; Lanthanides; Cohesive Energy.